With a legacy of innovative antenna design, the Advanced Technology Group of Envisticom, LLC, recently spun off as the Apothym Technologies Group, LLC (or ATG), is always in search of new antenna technologies having the potential to advance the capabilities of warfighter, satellite, and terrestrial communications. This is why the engineers with ATG sought to evaluate Fortify’s 3D printed low-loss and low-dielectric permittivity polymer resin for use in advanced antennas. With this technology Fortify engineers have been able to print extremely intricate and high resolution gradient index of refraction (GRIN) dielectric lenses that operate well at microwave/mm-wave frequencies. These lenses, impossible or extremely difficult to manufacture with traditional methods, can provide substantial antenna gain in a relatively compact shape and with minimal weight.
This case study discusses the process from design, simulation, and testing of such a GRIN dielectric lens, and provides results that show the promise of this technology in cutting-edge communications systems.