White Papers

Passive RF and Microwave Beamformer Networks

Beamforming networks for antennas have evolved since the 1960’s. Early designs were typically fixed-beam architectures, although newer configurations include complex adaptive beamforming networks. This brief presentation reviews the origins of the technology, and offers several example circuit topologies of passive microwave beamformers.


Read More

5G Primer for MIMO/Phased-Array Antennas

Evolving communication systems are driving developments in the RF/microwave industry. The large umbrella of 5G focuses on supporting three main technologies:

  • Enhanced mobile broadband, which is the natural development of long-term evolution (LTE)
  • Massive achine-type communications, also known as the industrial internet of things (IIoT)
  • Ultra-reliable, low-latency communications providing mission-critical infrastructure for services such as transportation, public safety, medical, and more.


Read More

LTE UE Receiver Performance Measurements

LTE user equipment (UE) receiver performance has significant impact to cellular radio network coverage and capacity. It determines the maximum data throughput across the air interface between the LTE base station (eNB, evolved node B) and the mobile network subscriber UE, thus it determines the total capacity across the air interface. Therefore, it is one of the most important measurements to verify the actual receiver performance of individual devices, and a key metric to compare different devices, in particular.


Read More

Z Power Resistors – High Power and High Frequency without Compromise

The Z-Power style resistor gives a better frequency response with similar thermal properties in the same size package. This technology offers designers exciting combinations with ideal thickness, package, aspect ratio and terminal geometry selections. Learn more about the advantages to both RF performance and power handling with Z-Power configured components.


Read More

High-Power RF Measurement: Measurement Techniques and Methods

Techniques for accurate high power RF measurement in excess of 10W. A variety of methods will be considered including RF watt-meters, directional power sensors, directional coupler assemblies and flow calorimeters. The relative uncertainties, advantages and limitations will be considered to match the measurement to the user’s application.


Read More

System Simulation Primer for RF Link Budget Analysis

An RF link budget is used to account for all the gains and losses in a telecommunication system — from the transmitter, through the medium (free space, cable, waveguide, fiber, and more), to the receiver. By accounting for the attenuation of the transmitted signal as it propagates through the communication channel, system designers can determine the required signal strength and antenna gain necessary to overcome all feedline and miscellaneous losses in order to ensure an appropriate quality of signal for successful data transmission.


Read More

RF Basics & Real Time

An RF link budget is used to account for all the gains and losses in a telecommunication system — from the transmitter, through the medium (free space, cable, waveguide, fiber, and more), to the receiver. By accounting for the attenuation of the transmitted signal as it propagates through the communication channel, system designers can determine the required signal strength and antenna gain necessary to overcome all feedline and miscellaneous losses in order to ensure an appropriate quality of signal for successful data transmission.


Read More