Leti announced that field trials of its new low power wide-area (LPWA) technology, a waveform tailored for IoT applications, showed significant performance gains in coverage, data rate flexibility and power consumption compared to leading LPWA technologies.
Leti’s LPWA approach includes its patented Turbo-FSK waveform, a flexible approach to the physical layer. It also relies on channel bonding, the ability to aggregate non-contiguous communication channels to increase coverage and data rates. The field trials confirmed the benefits of Leti’s LPWA approach compared to LoRa™ and NB-IoT, two leading LPWA technologies that enable wide-area communication at low cost and long battery life.
The results indicate the new technology is suitable for long-range, massive machine-type communication (mMTC). These systems, in which tens of billions of machine terminals communicate wirelessly, are expected to proliferate after 5G networks are deployed, beginning in 2020. Cellular systems designed for human communication do not adequately transmit the very short data packets that define mMTC systems.
Physical Layer Flexibility
Leti’s field trial results stem primarily from the system’s flexible approach to the physical layer. The flexibility allows data rate scaling from 3 Mbps down to 4 kbps when transmission conditions are not favorable or long transmission range is required.
Under favorable transmission conditions, such as a shorter range and line of sight, the Leti system can select high data rates using widely deployed single-carrier frequency-division multiplexing (SC-FDM) physical layers, taking advantage of the low power consumption of the transmission mode. Under more severe transmission conditions, the system switches to more resilient high performance orthogonal frequency division multiplexing (OFDM). When both very long-range transmission and power efficiency are required, the system selects Turbo-FSK, which combines an orthogonal modulation with a parallel concatenation of convolutional codes and makes the waveform suitable to turbo processing. The selection is made automatically via a medium access control (MAC) approach optimized for IoT applications.
In the new system, the MAC layer exploits the advantages of the different waveforms and is designed to self-adapt to context, i.e., the usage scenario and application. It optimally selects the most appropriate configuration according to the application requirements — such as device mobility, high data rate, energy efficiency or when the network becomes crowded — and is coupled with a decision module that adapts the communication depending on the radio environment. The optimization of the application transmission requirements is realized by the dynamic adaptation of the MAC protocol, and the decision module controls link quality.
“Leti’s Turbo-FSK receiver performs close to the Shannon limit, which is the maximum rate that data can be transmitted over a given noisy channel without error, and is geared for low spectral efficiency. Moreover, the waveform exhibits a constant envelope, i.e. it has a peak-to-average-power ratio (PAPR) equal to 0 dB, which is especially beneficial for power consumption. Turbo-FSK is therefore well adapted to future LPWA systems, especially in 5G cellular systems.” — Vincent Berg, head of Leti’s Smart Object Communication Laboratory