Featured White Papers

System Simulation Primer for RF Link Budget Analysis

An RF link budget is used to account for all the gains and losses in a telecommunication system — from the transmitter, through the medium (free space, cable, waveguide, fiber, and more), to the receiver. By accounting for the attenuation of the transmitted signal as it propagates through the communication channel, system designers can determine the required signal strength and antenna gain necessary to overcome all feedline and miscellaneous losses in order to ensure an appropriate quality of signal for successful data transmission.

Session Papers & Videos: DesignCon 2018 Keysight Education Forum Sessions

Watch all 8 KEF sessions from the convenience of your desk. Get complimentary access to the materials that made KEF a huge success. See what the industry's leading experts presented and learn about the latest challenges and solutions in high-speed digital technology.

RF and Microwave Material Measurements: Techniques and Applications

Continual demand to accurately measure dielectric and magnetic properties of material is a common need and apparent in our everyday lives. There is a need to quantitatively characterize material properties at RF and microwave frequencies. Learn more about the use of vector network analyzers (VNAs) as flexible and versatile tools to accurately and quantitatively characterize material properties and showcase the broad applicability of the VNA as a tool to accurately do this at high frequencies. Learn techniques and applications of RF and microwave material measurements.

Your Guide to Technology Refresh Choices: How to Balance Evolving Technology and Cost 

As technology evolves, choosing the best way to keep pace depends on the capability of your test assets. Keysight can help with Technology Refresh Services ranging from advisory consulting to equipment trade-ins. Explore the possibilities in our eBook: it describes ways to evaluate trade-offs and manage choices.

Is Your Handset RF Ready for 5G?

Accelerating 5G standards development is creating pressure for smartphone manufacturers to add 5G new radio (NR) support to handset designs. 5G introduces new challenging requirements and initial mobile deployments will create additional complex RF challenges. Innovative new RF solutions will be required to solve the complex challenges of 5G.

Introduction into Theory of Direction Finding

There is a growing requirement for determining the location of emitters in radiomonitoring, security services, military intelligence, etc.  Spectral components used in spread-spectrum techniques can only be allocated to a specific emitter if the direction is known. Direction finding is therefore an indispensable first step in radiodetection.

Quickly Evaluate High Performance Oscillators

Learn how to quickly evaluate high performance oscillators. Designers and manufactures of modern, high performance OCXOs, CROs, DROs, TCXOs, SAW oscillators, etc. are pushing phase noise measurement floor requirements to the theoretical limits. This unique phase noise test system can accurately measure these devices at the fastest acquisition speeds possible.

Optimize Battery Management Systems via Temperature Profiles

It takes the right tools to perform a job well!  Case in point - designing efficient battery thermal management systems for all the battery-powered, portable devices you’re asked to design. Read our “Temperature Profiling Application Notes” to learn how you can optimize battery performance, increase reliability, and avert safety issues.

Combining Near-Field Measurement and Simulation for EMC Radiation Analysis

Electronic components are required to comply with the global EMC regulations to ensure failure free operation. Currently, EMC measurements in certified institutes are mandatory to certify performance complies with regulations. Since these measurements are performed at the end of the product design process, failing an EMC test can imply a costly redesign.

Antenna Basics

This white paper describes the basic functionality of antennas. Starting with Hertz's Antenna model followed by a short introduction to the fundamentals of wave propagation, the important general characteristics of an antenna and its associated parameters are explained.