

Bringing Commercial Manufacturing Practices to Defence Electronics

Doug Carlson, <u>Damian McCann</u>, MACOM, Representing Richardson RFPD/ARROW RF & Power

Rome, Italy | September 30th, 2014

Agenda

- Motivation and Approach
- Examples at each level of assembly
 - MMICs
 - Power Devices
 - Power Modules
 - T/R Modules
 - Planar Arrays
- Conclusions and Questions

Motivation and Approach

- Widespread deployment of critical defense systems particularly phased array radar and communications – is hindered by high system cost
- Expansion of market into civil systems will not be realized without addressing cost
- Cost is driven by
 - System Architecture
 - Manufacturing Approaches often low volume, proprietary, captive

Effectively Leverage the Global, > Trillion Dollar, Electronics Market Manufacturing Infrastructure for Defense Electronics

Approach

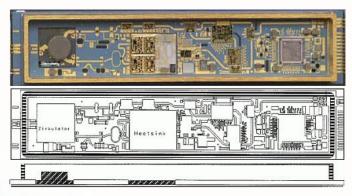
Conventional Approach to T/R Modules and AESA's is not cost effective

- Limits the use and proliferation of this technology
- Does not leverage scale of the commercial market
- Focus is 110% on performance with little regard to cost

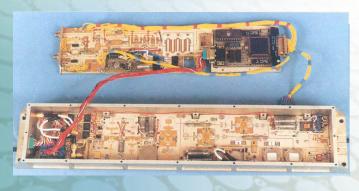
Need to emulate commercial practices

- Leverage manufacturing infrastructure
- Accelerate Time To Market Months NOT Years
- Drive the cost to enable the market

Think iPhone *Not* JSF!



Conventional Approaches


European

European Space

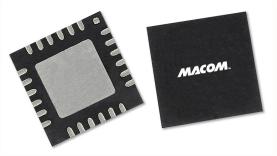
India DRDO

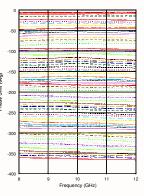
- Conventional Approach:
 - Ceramic/Metal Hermetic Housing
 - Both "Chip and Wire" and Packaged Components
 - Focus on Performance
 - Slow to develop and move to production
- Approach Drives:
 - Manual or Semi-Automated Assembly
 - "Custom" Mentality
 - Manual Test
 - Low Volume Production
 - High Cost
- Commercial Approach:
 - Plastic Packaged Parts
 - Printed Circuit Boards
 - Automated Assembly
 - Automated Test
 - Performance is king
 - Design and Build to Cost

Low Cost Guidelines

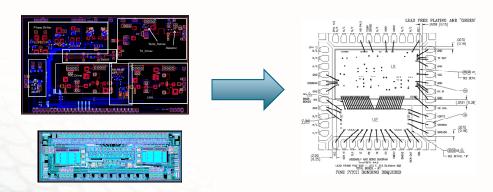
Approach		Implementation
Simplest architecture to meet application requirement		Reduces beam count/subarray complexity
Use standard manufacturing processes		Standard Process Technologies, Packaging and Printed Circuit Board Approaches
Minimize number of parts		Integration where is makes sense
Avoid large number of connectors		Panel vs Brick
Integrate as much as it makes sense		Smart Functional Partitioning of the System Block Diagram
Use COTS parts as much as possible		Passives and backplane components – Careful Consideration of COTS / Custom Trade-off
Avoid exotic materials and technologies	√	Standard Semi and Board materials
Avoid very high precision machining		None
Test of components prior to higher level assembly		At Chip, T/R, and LRU level
Maximize automatic testing		Conform to High Speed Automated Testing at All LEvels
Reduce or eliminate touch labor		Auto Assembly, Surface Mount Technologies

Agenda


- Motivation and Approach
- Examples at each level of assembly
 - MMICs
 - Power Devices
 - Power Modules
 - T/R Modules
 - Planar Arrays
- Conclusions and Questions


MMIC Components

Discrete Functions

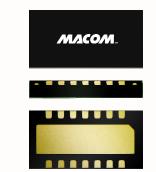

- Exploit mainstream technologies and processes which support commercial scale production
- COTs versus Custom
 Decisions driven by OVERALL
 best value
- Packaging compatible with high speed automated test and surface mount assembly

Phase shifter in QFN Package

Integrated Solutions

X-Band Single Chip T/R in QFN Package

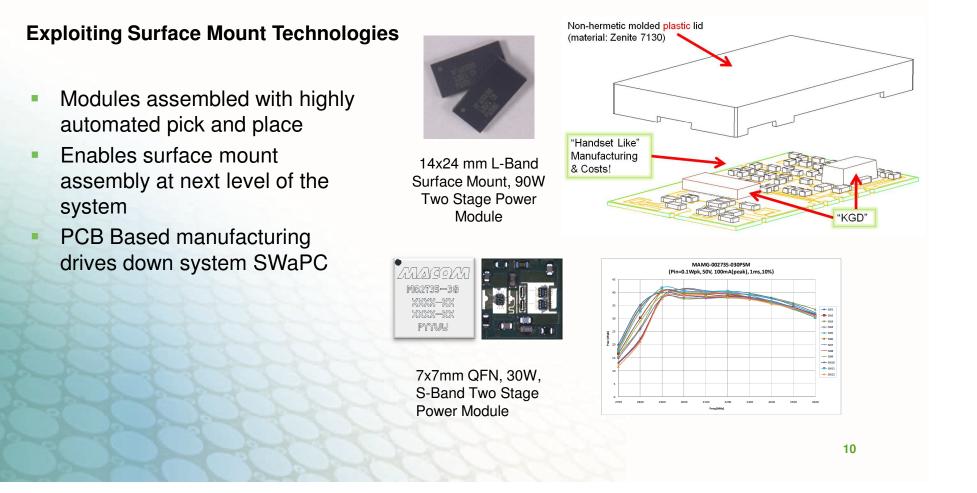
8


Power

GaN is Just The Start of The Solution

High Power In Plastic Packaging

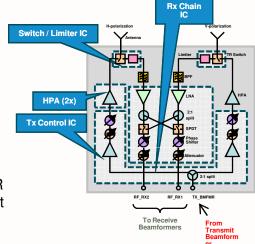
- PQFN, DFN, SOT-89, TO-272
- Why A New Way
 - Lower Cost of Packaging
 - Lower Cost of Test
 - Lower Cost of Next Level Assembly
 - Lower Weigh
 - Smaller Size
- High Power in Plastic Enables Surface Mount Assembly and New Defense System Manufacturing Approaches

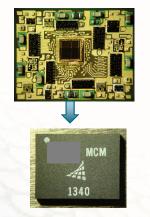


Multistage Surface Mount Power Modules

Leveraging Commercial Scale

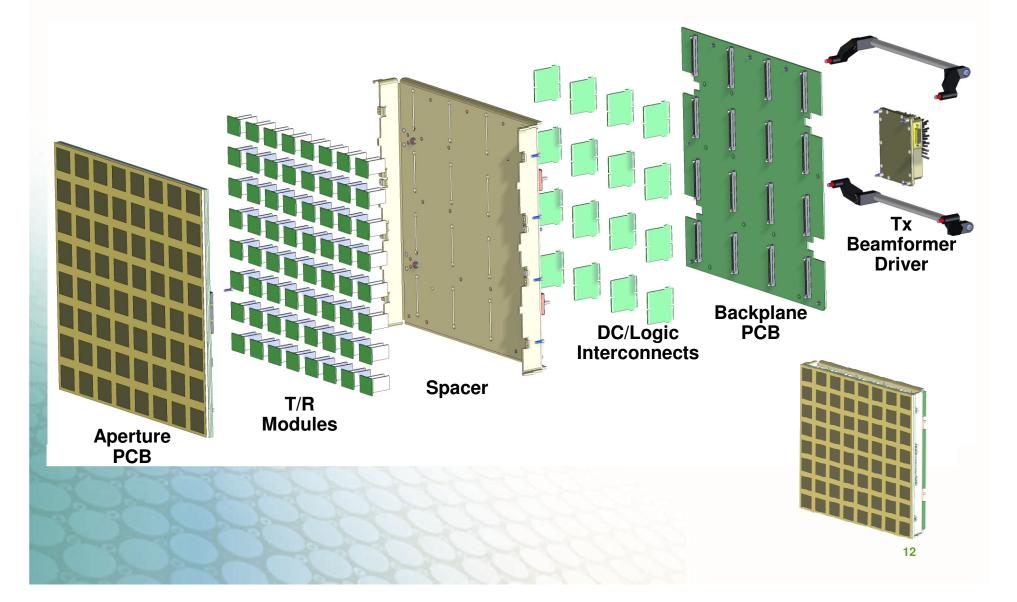
T/R Modules for Planar Phased Arrays


Non-Hermetic T/R Modules


Surface Mount Assembly

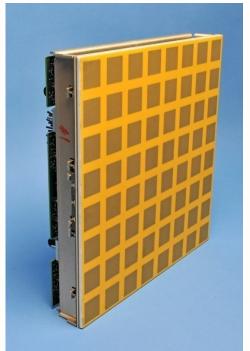
- Dual Polarization S-Band and C-Band Modules
 Demonstrated
- Fully Compatible with GaN Module Approach for High Power GaN Versions
- Enables Surface Mount Manufacturing at the Array Level

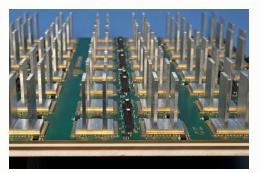
S-Band Dual Polarization T/R Module – LGA Surface Mount Format

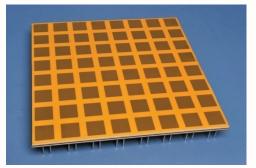


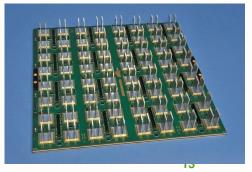
C-Band Dual Polarization Quad-pack T/R Module – LGA Format

Surface Mount Manufactured AESA






Planar Phased Array Line Replaceable Unit


S-Band – Dual Polarization

- 64 Elements per LRU 16 W per element
- Overlapping Sub-array digital beamforming
- Successfully demonstrated aircraft tracking over Logan Airport: Boston, MA
- Extending Technology
 - 100W per element at S-Band
 - 25 W per Element at C-Band

Conclusions

- MACOM is pioneering the use of commercial manufacturing practices in demanding defense radar and communications applications
- Solutions based upon:
 - GaN, GaAs, Silicon semiconductor process
 - The right technology for each function
 - Plastic Packaging Even for Power!
 - Enables surface mount assembly at next level of manufacture
 - Laminate Based T/R and Power Modules
 - In Surface Mount Formats
 - Planar Phased Arrays based on Printed Circuit Boards and Surface Mount Assembly of Line Replaceable Units

Driving Rapid Development, Affordability and Performance

A New Paradigm for Defense System Manufacturing

