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Simulating with COMSOL Multiphysics®

RF heating: Coupling electromagnetics with a heat transfer
Simulating heating of medical Implants in an MRI scanner
Live Demo: RF heating of an MRI coil
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RF heating of a dielectric block inside a waveguide
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COMSOL Server™ —,—

It’s is the engine for [N
running COMSOL
apps and the hub for
controlling their
deployment,
distribution, and use

*  Administration

Simulation Apps
They can be run in a COMSOL® Client for
Windows® and major web browsers

Microsoft and Windows are either registered trademarks or trademarks
of Microsoft Corporation in the United States and/or other countries.
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Poll Question

Are you currently simulating both RF fields and
temperature distributions in the same model?

e Yes, I'm simulating them in the same software.
* Yes, I'm simulating them in different software.
 No, I'm simulating them individually.
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AC/DC, RF, Wave Optics, or Ray Optics?
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RF Heating is the bidirectional combination of a
Full-Wave Electromagnetics Model with a Heat Transfer

COMSOL Multiphysics®

http://www.comsol.com/video/simulating-rf-heating-comsol-multiphysics

http://www.comsol.com/model/rf-heating-6078
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RF heating occurs when energy is transferred (lost) from
the electromagnetic fields into heat energy

e-
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Conduction Current Losses
Electrons moving through a
conductor lose energy

Displacement Current Losses
Dipolar molecules rotate in time
varying electric field

Induction Current Losses
Time varying magnetic fields
induce currents in a conductor

An electromagnetic wave

induces all of the above
W80 COMSOL



The electrons and molecules move randomly in
response to electric and magnetic fields

saseast
0 PO
M) ’.

Heat is a measure of the volume averaged
energy of these random vibrations

Temperature is a measure of the average
magnitude of these vibrations

An Electromagnetic Heating model computes the rise in Temperature due to
the transfer of energy from the electromagnetic fields into Heat
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COMSOL solves Maxwell’s equations to compute
the electromagnetic energy, as well as the heat
losses into the material

Vx(,ur‘leE)— k(?(gr — ja/a)go)E =0

Frequency domain form of Maxwell’s equations
describing the electric fields inside of the domain, at a
known excitation frequency
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COMSOL solves Maxwell’s equations to compute
the electromagnetic energy, as well as the heat
losses into the material

r Electric Field *
Vx(,ur‘le E)— k(f(gr — ja/a)go)E =0
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COMSOL solves Maxwell’s equations to compute
the electromagnetic energy, as well as the heat
losses into the material

Electric Field *

Vx(,ur‘leE)— k(f(gr — ja/a)go)E =0

T T Vacuum Permittivity

Wavevector in Free Space o
P Excitation Frequency
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COMSOL solves Maxwell’s equations to compute
the electromagnetic energy, as well as the heat
losses into the material

Electric Field *

Vx( ‘1V><E)— ki(e, — jo!we,)E=0

I

Relative Permeability T Vacuum Permittivity

Wavevector in Free Space o
P Excitation Frequency

Relative Permittivity Electric Conductivity
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Material properties needed for analysis,
and what they mean

Conductivity, O, relates the current flow to
the applied electric field: J = oE

Relative Permittivity, €, relates the displacement
field to the electric field: D = ¢, ¢y E

Relative Permeability, [l relates the magnetic flux
to the magnetic field: B = y, ¢y H
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To model electromagnetic energy being converted
into heat, introduce a complex-valued term:

Vx( ‘1V><E)— koz(gr — ja/a)go)E =0

I

"

" Common way of modeling
r losses in dielectric materials

, - Mostly applicable for ferrites,
H =H — J,Ur with low conductivity
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COMSOL offers other material loss models

’ ] Same idea, but different way of
& =&, (1— J tan 5) describing material loss,
assumes zero conductivity

) Refractive index, with real, n, and
g, = (n — Jk) imaginary, kK, components.
Assumes ¢ =0 and y,=1.
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Equations of electromagnetic losses

Qelectric = % Re(GE 1= J&)EE . E*)

Qmagnetic — i Re(_ i :u_l (V X E) (V X E)*j
2 )
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't is also possible to include losses on the
external and internal boundaries of a model

Lossy Exterior Boundary

Lossy
Interior
Boundary

Lossy Domain
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Losses on exterior boundaries can be modeled

with an Impedance Boundary Condition (IBC)

outside ;U

—nxH+E-(n-E)n=0
\k( inside e—jo

(4

The IBC is appropriate for the exterior boundaries of the modeling space. It is
typically used to describe the boundaries of an object that has a small skin depth
relative to the characteristic size of the model.

The IBC is appropriate for modeling objects of high conductivity (metals) or high
relative impedance (sea surface) as compared to the modeling domain.
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Losses on interior boundaries can be modeled
with a Transition Boundary Condition (TBC)

(ZgE,1 -Z1E,)
Jsl = 92 2
\ Zo—-Zn
Bé( = (ZgEp—ZrE,)
E J32 = 2 9
t1 ZS—ZT

. . . . Jop_ 1
The TBC is modeled as having zero thickness, but different ZS = % tan(kd)
electric fields are computed on either side of the .
boundary. 7 _ CJOU 1
r k  sin(kd)

For the problem to remain numerically well-posed, the
boundary should not completely block, or transmit, the

k= oJe+(c/(jo)u

fields.

The TBC is appropriate for modeling thin, lossy, films such W COMSOL
as anti-reflective coatings.



Putting it together with Heat Transfer

oT

pC —+V-(-kVT)=0Q

> ot
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> Boundary conditions

o
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Poll Question

Are you currently involved in MRI simulation?

e Yes, I'm simulating only the magnetic aspect.
* Yes, I'm simulating both the magnetic and thermal aspects.
 No, | would like to start simulating such an application.
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Simulating Heating of Medical
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Overview

* Motivation for simulating MRI scanning of medical implants
* Previous methods determining MR compatibility of medical implants
— Experimentation
— Finite Different Time Domain Solutions
 Multiphysics modeling of MRI heating
— Full-body modeling
— Vascular flow effects

e Qverview of modeling methodology
— Modeling of bird cage coil
— Addition of electromagnetic losses
— Example of ASTM F2182-11a calibration rod
— Comparison with experimental data
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Motivation

Magnetic Resonance Imaging Machine

* MRIimaging
— Static magnetic (1.5 or 3 T)
— Gradient coil
— RF coil

e MRI and medical product interactions

— Interaction with magnetic field
— Image artifacts
— Tissue heating
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Tissue Heating during MR

* Time varying RF field induces I .
current in metallic implants "

* |nduced currents generate local
time varying magnetic field -

e |nduction current losses generated
In tissue

Qelectric = % RG(GE 1= j(()é‘E ) E*)

e Tissue exposed to elevated L
temperature can damage healthy
tissue

e Design devices that do not produce “ 2
this heating in MRI fields I
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A
Previous Methods for MR Compatibility

 Experimentation
— ASTM F2182
— Requires MRI to conduct testing
— Gel phantom without convective heat transfer effects

e Finite Different Time Domain (FDTD)
— Simple to implement
— Must solve in time domain

— Highly refined grid is necessary to provide an accurate
solution

— Difficult to represent devices with small features

— Typically linked to heat transfer via specific absorption rate
(SAR)

\ ALTASM Y8 COMSOL
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4
Multiphysics Modeling of MRI Heating

 Finite element based
solution of Maxwell
Equations

 Frequency domain solution
available

e Direct calculation of EM Y4
X

neating y?

* |nclusion of blood flow

ALTASM VB COMSOL
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Orthopedic Insert Example

 Generic humerus locking

plate

e Model includes body
cavity and skeleton

e Temperature rise
calculated as 5.6 °C

A 564

=N W s U,

¥ 0.0

Y<—T

Z

RF Induced Heating During MRI: Evaluation of a Passive Implantin an

Anatomical Model using Coupled Multiphysics FEA, Gopal, S., et al. , BMES
Conf, May 2015
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Comparison with Experimental Data

. Transient Temperature: 10cm Calibration Rod
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e ASTM F2182 calibration rod — 10 cm, titanium
e Temperature measured at ends of the rod
e Coupled EM-thermal simulation
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Vascular Flow Effects

40 n
= n
— No Flow =
O .
g . _\
0 . .
.g 32 p Flow u
> 5 28 / Multiphysics
fow 2 RF Coil =~ _
S o Powered OFff m Experimental
[ -
Vascular Flow Effects on RF Heating of Passive Implants: The use of a Flow 20
Modified ASTM F2182 Phantom in a Siemens 0 200 400 600 800 1000 1200
Tim Trio 3T Scanner, Leewood, A., et al., ISMRM, April 2013 Time (sec)

e Titanium implant, 10 cm
e 3T Scanner, whole body SAR of 4 W/kg
e Temperature increase of 20 °C

e Temperature rise of 10 °C with 2 L/min water flow
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Live Demo: MRI Coil

Develop model of birdcage coil in 3D
Develop solution in frequency domain

Include coil capacitors using lumped
elements

Tune magnetic field with capacitors
included in model

Use perfect electrical conductor to
represent coil surface and shield

Quadrature excitation via lumped ports

Include gel phantom and calibration rod
from ASTM F2182-11a

Calculate temperature rise in gel due to
induction current losses

)
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Q&A Session
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Contact Us

e Questions?
www.comsol.com/contact
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